On the Weak Approximation of a Skew Diffusion by an Euler-type Scheme

نویسندگان

  • N. Frikha
  • N. FRIKHA
چکیده

We study the weak approximation error of a skew diffusion with bounded measurable drift and Hölder diffusion coefficient by an Euler-type scheme, which consists of iteratively simulating skew Brownian motions with constant drift. We first establish two sided Gaussian bounds for the density of this approximation scheme. Then, a bound for the difference between the densities of the skew diffusion and its Euler approximation is obtained. Notably, the weak approximation error is shown to be of order h, where h is the time step of the scheme, η being the Hölder exponent of the diffusion coefficient. 1991 Mathematics Subject Classification. 60H35,65C30,65C05. September 30, 2016.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

A Symmetrized Euler Scheme for an Efficient Approximation of Reflected Diffusions

In this article, we analyse the error induced by the Euler scheme combined with a symmetry procedure near the boundary for the simulation of diffusion processes with an oblique reflection on a smooth boundary. This procedure is easy to implement and, in addition, accurate: indeed, we prove that it yields a weak rate of convergence of order 1 with respect to the time-discretization step.

متن کامل

A New Implicit Dissipation Term for Solving 3D Euler Equations on Unstructured Grids by GMRES+LU-SGS Scheme

Due to improvements in computational resources, interest has recently increased in using implicit scheme for solving flow equations on 3D unstructured grids. However, most of the implicit schemes produce greater numerical diffusion error than their corresponding explicit schemes. This stems from the fact that in linearizing implicit fluxes, it is conventional to replace the Jacobian matrix in t...

متن کامل

Weak Error for the Euler Scheme Approximation of Diffusions with Non-Smooth Coefficients *

We study the weak error associated with the Euler scheme of non degenerate diffusion processes with non smooth bounded coefficients. Namely, we consider the cases of Hölder continuous coefficients as well as piecewise smooth drifts with smooth diffusion matrices. 1991 Mathematics Subject Classification. Primary 60H10; Secondary 65C30. December 22, 2016.

متن کامل

A Composite Finite Difference Scheme for Subsonic Transonic Flows (RESEARCH NOTE).

This paper presents a simple and computationally-efficient algorithm for solving steady two-dimensional subsonic and transonic compressible flow over an airfoil. This work uses an interactive viscous-inviscid solution by incorporating the viscous effects in a thin shear-layer. Boundary-layer approximation reduces the Navier-Stokes equations to a parabolic set of coupled, non-linear partial diff...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016